1. [PDF] Worksheet on Points, Lines, Planes, and Angles
Points, Lines, and Ang. A midpoint is a point that bisects, or divides, a line segment into two congruent pi. Point B is the midpoint of AC.
%PDF-1.7 4 0 obj << /Type /Page /Resources << /XObject << /PAGE0001 7 0 R >> /ProcSet 6 0 R >> /MediaBox [ 0 0 612 792] /Parent 3 0 R /Contents 5 0 R >> endobj 5 0 obj << /Length 47 >> stream q 610.56 0 0 789.12 0.72 1.44 cm /PAGE0001 Do Q endstream endobj 6 0 obj [/PDF /ImageB] endobj 7 0 obj << /Type /XObject /Subtype /Image /Name /Page0001 /Width 1696 /Height 2192 /BitsPerComponent 1 /ColorSpace /DeviceGray /Filter /CCITTFaxDecode /DecodeParms << /K -1 /Columns 1696 /Rows 2192 >> /Length 8 0 R >> stream ÿÿÿÿÿÿÿÿË@Zz´nñÿÿÿÿÿÿþey§ï-1°_ùÍ©{È4{ `¦ß#Ù®ÓM:ýðO MtNß¿íB|&h ßÿèéÿ(ÆÉþÞ=5¤Øíõ ¯o§öýtIßÿé?ù³¶gé|þßÿÄ>ßÿý~¿o¯êf×§Õ±÷ÿßÿÿÿÉÓñöûþS¯ÿõûµôyöû_ÛK÷ü{a~¯KüþDßöÖëkëÝÚ ÂÕ&ý¼÷ðÂÄDDNl/i/h0B1QGö^"( ×±]ÃÓ]TÅóqqàx*ÍÄq!Ç'Çs9ÚÜÉÁNg.å¹È£;9ìðx+CÙþh;8G>¥4ÊDDDDDDDDDDì¯7F#¼b/Èñ°R0Dqä`4ËGeã¨â""""""v;#ätfÓ!£.æ]ã ¶ ±;Dts1Ãx2;/2ùx¾\#²ñr#åâàx72ðɺ#êC$ ¦õ`,¸Ä.âA¢èËàÓPrãÿËHQYLÔ®?ó ¨¸di.DxÍæOÌ Ð5ÂS!Ñ ¡¬Sô$ÃåXæs^ðXä3B9cr ¨"Lr+æ·8äÇ"8<4,rÇ Ôä3G-ɹàÎUsA!ªåqBä%rr¸¡ÄDDDDDDHÇ @äÎg3r¶´Rrq+CÁì«* 6ÖB2ÏsÙ·(sáXx3Ч#²¬DDDDDDDDHe·$ܤ¦áÌå¹Vw È9cw"A j ¶Stb"""""v±Hæ]DxËæ"ùÐ` Ä#Åî""""""[Ã!q)ËàÑÄDåÙp(â%bÿÿÿÿýÿÿþCDÉô¼Ë²¢F?av£éÖLîɱM^õ 0&:b·,ôìèÚýÞ±htéÄXL'¯¦?ÝIë"ÿ×»M&Hvú÷ZpoörýÿÿÕ Üúù ïù =/ÖöMò i<ãUÜgiÿä(úéþéÑ §ø´òÿ ÈGò$cÕí:ìÐS6&3As¬y3©£6gWÌòãÿÂ_¿e8_×M}?âozyúOá¤D¿È-xOÓÓï Â'  WTÔ¿é=_õOOÕipÁÓ¤ú·¯Hiúä,4!Ý?ºDõÚzzi¿ziy ·ýãßÿþ¿ü¸xaéõz]ÔNྴ¯ù;ôx0H&¾M.Þ©õéü& ú¯ÿÿÿ÷´ûÅ©§X_ÓÓÞ©_ëCüÑ êk¢Pé_DÝߦâSÿßÿÿÿÿÃ_§×ÿëÌ`÷IÞÿtQ¸«¦>â¢7&ÇÒþ¿ÿ¿ÿýµÿ¥Öÿÿ}ôÝ>ôé=m6}jÈàÿùOÿÿÿM¢ë¯°ÿÿáÝw×ÿëÿÓ«×AÖ?ÚÈ@ÿÿþ½|Âú#ïÿï·kÿðþº»%׿{¤úO_íaí¯ú÷\]ÿß Ãÿÿ·ºÕì?¯Øh¿×¿Wÿµ³ïïíµÿ¢tq_ídW Úÿò9Îëß}ÿk_¥ÿÿrcþÇùãýAýÓ}~Áq×pïÿò!|·_þßúa¢Qïû«§×ö/ãÿÿýl}¯gðöúÐ}§Uýÿ ´ÿïÖ¾\+Mÿýªÿþâ¿øüÇ c¼ÀýìÎ7¾?õÿÈÄ:ôÿÿAþÚ®ýÿdý}nµÇ\_ðËïÞßü Úÿ¬EÿôÃì¾í{ÿ¯~Ò_o¿ÿ_±¡öûÿ»ëúÿkÈß÷ÃUMvÈ®¯ÚÿÚjC¿¦AÇòׯþÞ¿úÿë÷Èâ¾¼,ÚØ/tè0¬5Èਯ°M/µívÈqÓZ¿Õz_å=_ögg½}°-oöìè2kjo([(¬+Lá  ì+ßÜ4Âõö«cý³jm?¶ sÐm£êÂ$?¿ÂîñöT¯BE±HDDA#+CË0A¯õ&ºþ8®$óñ Òâ¿b¿ö-ýoñCG`0B3¾wLð ÖÂõëÿaGÿ׿ÇåÖ sR#6¿Hb""""&§¾A¯OØMmWý®6;¡ÿT"B"AyÏaS³M5 öê1ÀÿTd´FDDhDDDDaPaT~B« ù¤VEI,DËÄRA+I|iøÄ/Ô±ü"ØVGâ4¾?ùÿÿÿ&?2ƾ>©ÚeIý=|¯±ýÊ·þ6 GÈ ùª;érïÄq¤øúá£.â)åEû ãfH3ìþa¤ÊFG£¤HÕE}NÖX@äcüï Ó.IçXa`Éz3#ñ)óÙ¶BO¬÷àÅ õM=5_Piª&Ð ÏA("\ÌâäTfâ Ç3Wÿ§ÿîø÷Dß4=4MÚ-û ïOÕ===0AùÖTA¨A e''qG³Rî:¯kV.&½7C¾æw4iyé§§é®L&wAÝ A0'.T{93Ñ ÉÑÈÈNkÞäÿ¤/M¥¯é7úX·Cáôh˸Äïôg¢q¤å»ØOí4ôÓ ºøL&0=ÂaNWõäH¤üú÷ÿú~)·§Ç´Iéþ'¶Ât\CK5¶ÑDãéßé¦k§Vúzêý²M·]~½?½}7½=ut¼UÕ8Ý ·ÄöÚF7C£Cmë¢cºEvé¢cþ½Ó××öªaÿõ}9¬ø^PÿW_kûÖ¿Åø¦Ç¨§Ié¿úHzn'ºõ÷ïð×þúÿÿCü'µþô==ÓTý?U¿]i1õé]~Óÿÿÿÿ4N>¸aÿÿúï¡÷¿ûðõîhûþ÷êºz¯ÿôݯßûtßaÿõhDãñWýl>Ð×0/VúÂ}Õ¯¿^¿ßôÿõþÒÿÃiv¾ÿÿè?ðä%ü0ý¿ÿÚëúõ®þëaµøá¯×ø}oµoýô½ut¹a+þßÓõî¿èXzÿõù'l?û·ÿiý[kïßÿþõÿáî·äa>ÒpÞÿÿñûÿa×ÑÕ{úÝ6ý¥ÿëiz¯oÿ·é+ð^¿ý;z½ü ÿá¯,úïüÞÎãµ7%æÿÿ¬þ¿í/÷µ×_ú[ýC{ý¯×/^ß×AÚ¿òC¦¿øab»icدþÑìyukÓa;ÿø";]m\Íkþ¯öºÿþþ½¶WYäô½¦½_¤Õ¦«úÿد¨âwÕÅ1_çIv*×JÂwúõëý¯ûû÷ûuõal&°P¶A¥ ußû[]ÓM/ñ]1;بòúö=Ì.´aæõ÷¦ÂG¿ìõÑÅí¯ç`} `qеA VL&ª¶_õ½m0£ê+â¸a/+ÿÓûKͬä=DqÄDDhDDDC ¯ ÖMSM5ïú¿« ¥ûØþ+b½I?þ""#4ÖÁS[°¨0ª0¿¥aµñ×\DDDDDDDDDZi¬0¨0ºk]üGÄDDDDM1+ÑÔq6ãóCþ ü¶ÉýûQÿÿÿæBQjÓ&ÑW}NÖ¤þ¤]$ë´îC¹W¢¦Kn²m_ö³;;íSÃËäA×ãXrd)Ù/qù9t#Ad4ÏfØAfyNÈÌÜu±ÿ¾ÂÑ'oÞ¸¾ ¦j4jÓ¦T&~MPdD EÌë#W[ÔWþÿV&>ßNµ×Ó é§¦ i&§-PfäA`É8ÙNÊC\ݤ\uþaÿÖMôEÇM}èÎüÖâw¢oÕïÕ4ôýÿ^ôÕ=0<Âh0E.g~@ÌÎ0Î,£0ûõí !Jâ|Ó|SøOMóÛiõÑ7jèâT}bwì'NÓMé=Âj> Õ3¬l~90F¥ëßÞKúzT¸¬[àO^¯ú½¦ ÌýôMÿ0ì0¥ÅNNÕ=T&§öñÌ?îÚ_]ÕÿÖþõZONýýÖÅ7¦÷Iô¯ç¶ó=:¤[¸úiúëÔ(ÿ^íÓÓÝ}dÞ5Ó?¯µþ«¿tºéø¦ý^ÂTúM¢v=&ëoDãèÐÃ[U_KÌÿÿÃz)ß:ú÷Çêþéé×민(¼WNµ× ´ñ^·Cô)¸ÿëöÄuV¦§õÿKúë×î¸ ÓïJÿO¿¿N:ÿÓÿ^ÃDïUÚ.ûñÿ~¿þ]_{Ov¯diý¤ýt5×ÕþÂêü®Fÿøm&®EÕõà¿ûµúãÿÿéºå»uï÷Ókõëc_] ÁZëïë©j=?òD~ÿúÿÿöº ¯ÿÿÿý?ÿßO¾ÿ}wý k®ó¯ùþ¿ÃÑyÿÿÿëÿÿçýÌû]k÷×ÿ]éõ¿÷ÿà¿«ÿéïßÿÿÿß[ÿö7öaÚM×÷Úözë]{?¶¾¿ÿöºÿmÄ_i®N®¿ÿÿ¿ôÅ&¶±Q^¹|Þ¶þÁ~Ñÿam#çilwûÛfkáïÿ¿úû®½¥ÿñ×þ¢h·ãbb¾+ý);ø¯üsð¥ÿ¢é¯_´õ½µÿ[þ¬&×ïUí{ÿÓ^×Oò;£ôö8¥_0ý9ÇÑǯÚM¤{´»_ÿå9NäcÿX0@Â`¬0_L Óiö~ÂkÚÿö6¿éÿcïØEZbaݪwó8iZ_ô"ç³´º>""#2ÓA Âuj_á¦üRß±_ÖÅ+ñ±_ÙÓZô#0MX`~a?×þÖÓµí?¬j÷wí!ñj a4ÂÚöö¾¹cué$DDE¡CDXOºGâ>4¸U÷a$Zïu¤JßÄDkëYÙ!l ôÿM§õÓùÛæI~aÓM´þ¿ÿ*Ñ'sùO×°f°çh¨Ê¢ßñ¯ÂöAþNªO¯ÎëÖ; H>Þ>E gÙ¸ Ð{g2AçXÙ{A*ú~IÀ~øAªa? ÓTíE&ßê¿iý«éÕ{IþÑ8ú47Ö{nûâXô\?Øab-5Ý4ßúBñM¢v8&÷ã}XKâ/§âºzt¯kè_ÓÿÚ×NÓפÿúëªêÈ7û׿Zóûÿü¸a «ÿýî¸ý×áµÿïÿùõUÿ½¹yýúÿícï¿ÿé?ëúëùi ¾ûÿ÷ÿû^¿Ü åÿÿúþ·ß׿xAÅôWUþ§¾ÚÚê¿Ú¢^Úö®¿¹ á=W°³»I¿÷´M¯Çüx%q8þ¢gÜq_å÷S ܱÿ¦¯øö¿i¯ãZxõl&tÔ.¿kV_»ZNûÁB"ÂeèZ Áx´ÓMPiªÖ"#ûÒ¿ú]¨Di¡øúÿ¿¹{´þÃVgé´û }ö^aUüïÿÿÿùýG²ÐUz_×ÇÿÿËMbøÿÿüã娡}~?ÿÿÿÿÿ\ÿÿÿÿù ?ÇþwfU##?ödÊ;Y__Mò'díD]ïa¬æEEôú6:ôZiqÁÿí*mq®+q¢í3´°ÏOhøþ1ÄR+YJòaVÿó`Ì2A.d6%ìN¹ÌÔ5þ¿Úi@ÞÄú,v¨0P&¡ 0@ÏÆàA¡èämKµ4ÌE¿×ýDU6äéþ-=Bªz~~'L Ð5Aü f,Üf¸ÙØ_úæ²ÛÿéòáM t`q@é5ÿ¿ÓZÔ&w¨L áæ óH "Ñ dì6ÎDOÇ È7n+ëk¤4¢pþÂÄÐÑvý`v½ÜÐåÅ ¾gzýÓ¦¯ØMPiÊj ð5ÆàÌó4ÂóÙ:±Ìàÿ_ȯãkO¤ý>üWÐÔS¤/]t=<0ªXí!ÓaiÛ¯zziéúzé®ì&Æ·õoëK÷ÒúÁé}7þÛýcòñE7Ä íù¡µ£;`7v`¥ïÑqûþÒ~îhÿßì«>÷ÿ¯¾¾úÿ÷ÒxOÕñ_ãè-µÒ èÑDáøú4A}ÂDßør`¨ëÖ¸öCoO[þºþúÍdÝÕ }?};ôý;ûwZ\Spëo⿦ÿlÔ9cúÿÿ Xy'÷ßû÷îßo«×U?«û'Z¥ºûu«ýpºoÒõÃàÇöÿü7.,8¯÷þëØ}*5Ðÿ§÷õ ¿v뮺{÷ÿé¿Ä2;ý{ï ¤0äCÿ_ÿÃôNÓ~ÂÿÿúýЯXW×õúýgjAþ¥Âkò0pß«ÖõÿíûÓþÿý~µè¯#¯vúþð¿OâÿZ=îßþuþô°Ûé?¯ú¤ÿþÍE|ì?ÿþ5óµ°Êÿÿa?×û^×_öÿÕ´ýwÿ¿ÿý^äPß"øoÿÿ§ó³0QôYðoì_Úµgïø"<ÿïÿnÿöºÝÿëý|ÕùzýCÿ"£àÿÿúÍÊÚ0ó¦Ù}±VöfÿKý}´µÿý~[¿ûWÿúùzíCÿ¶ë+Cýü¿þS¤_ð?°üãµÖÿ×^ÌÒÞÿ«ÿÿ¿ô¿au]0¯a0Øâ¯ØñÇÇ«ýíÑåÿ³í]°7ÙëÛ_ûÿßµ0¹OôSº>G5A¦A§ÚkÖþö·}j=¨®?ÂüNû#Ö'²ý øvoKÿÿ³µd3!ü8!"!kà Âamj×í&Ó[®Çí,qIq±û\ÿöG`Ø| ®6>8Zkaaj]Wµ´ÂÚv×_ÿñ±TÖçÃQDq?£  ¡a0^TýÿÚam$Ñ Cþb^DDDDDE¡jA£X< Ä®Q ÂÃH0E@<~*`Á&·´¢Lþ°`°hQ üA(`°è^È`A #.ÁÁX<~ÂÄ®j gðdËrÇ3åÂá±>²ø<< d1£ù\±Á EX:)à;-ÉNAà Ø?ôziFY ¢IýH¦Eú ðE2£ôflÍÑÝ">]ÿ½0zíbK i´F¦L®;.äÇ|uÿñÄNÒ¢];5×%z_ò1ÏÝØ&e.Ö>Dãg a9hdüÑÆÙChæB.¹!÷k´RW bG,uÉ:Ó¤Âw Âtª¡4íB xyèÜlÉFfl§ÍÇFjÍÕk+xó½Ìý'¦JöÖkö©¯i Âôa2à÷.{Úúò ëüÏÑo¹§ñ;Ñ7h»¿Fz'ÓyoúNõÓ]0¡0Ò÷5¿F|ÎÍ#g@9ÏÆfFFÙÓ)t]¹yc¿Å7Iø§cÚéÒºn)ºQoÒæz.<¸óEÃûM~õM$ÿýS¶©è4 gã Â2\Ìã[@È&ÒÇúë«êÒ~´þºþ)¿®)´Ò°U1Þ¯Ò&øþ¶÷[GßÓÓOÓÔ&©«´kþþ~«êõ}þÿ×_ÆØÜLâh¤ÚA¼-6×?z3÷?¢ã¦Û ôûì" AÿëWë§ñk®»ÿþ_ëzkúøI'¯ z¿Mÿý7e&ý¤(»m#=q«ÿÿýLÿû}}ýÝ9õ]=kqê¢ë×ýW®¾)ÿâ¦ÎÒ?ÿÿûüuÿWýïÑ6ý>«[Þ^5_tþ·}=6¯ÖºOOàÈ>Ê¿ÿÿÿëÿè0þö÷ëCþ¯òÝÿuÿÿþº¿wë'2Oÿî¿ë¬þÛúÃ~¼ -»Ñwªãõº ÿ5µºzëþ§þ´¡÷ùÁÿ÷ÿÿðVgþ¾ý¿ù0Ã_ø/§Ã¯áºûï÷ÿÿÿoę̈ ÿïºþ×_¿ÛÿïÂßéÿ#ÿoûí¯ÿÚkÿý^ÃþÓAöMí-oí}³û÷·^ÿ÷ëû¯ôê¿ý©.]¿ÚüÃÿµÿÜ0ÿæ<Ê KÿSVÒýÂë¿_Î/÷þ¬Ïßõÿµ¿ºþ8þ÷ÿÿL7ÿYäÿö*<½KÇüqVGø®É Ö¼ßÚûaõýÏØY©ýïß¿ë[î¿ß¯VÌ¿ÿ´Óí_´ì^ׯ¿¬0?ãÍ´º´aÿØXh±ûêÚ¯¢ÏEÓÕ¯Ó}ö¯ûÚÿ ¿ÿ´Õ{_´Õm}?¯ûâ¿ãbµô¢µK³?Ú¾±¶¯ï·úV?ôÐa´Á5° Á· S_°ý µí~¬'ûCk»ÿbqöGØêÒØ«¯¬Â7ú]nd6 DÂT* t¯ØL.ªëõ¿j£Ýéû8¥¿;ÔPd1ËqVªéÿi^¶·kZéúKw (â"""- Pì!Ö&·Úh0¼FÎÓâ"a° ÝòÍ#\DvÎÔõЯØwëôþ!ôþ>aKõ¾Gß÷ó³W6:êM¼=ý?®Vv̽ôÄ&v[¯ë׫Gï¿þ>µóùìÛ!²37£§)×_¾F¦©Õ0Ù³ ñèeH< ÍG#¤kõ_ ¯¦ªí éMôÓ0?Ó'®UtßÕ?NXïûU¹oTý? êOêü×Z¡Ë³>T[Ñ8u¤2Ýø`pôæúáÊÚí?Öq< Ç^!6úNØôº->©¢púâÿOõ[îÓ×ý7OíÅ6-ÄÎ'?×#Ýuõ_ÓÓﮪ_ðÒ¿¾?û^¼ëõ½oý÷§3oÿýt>«ÈâUhzѵyq=F߯ªëø"=Ñ!õü¢qüxýÖU©q>+ ÿÈ¢?Oÿ!é´ÿôN?Çÿ§ïå¨úO}ÔN#ÿôù ßIn¿ÿ_^¼6µíÿQêUW¯ÿÿºÚö¯ÿþ_Ç×úl÷þ¶¶ÿ³ûavÒýý®GþìþÂÚPDv¶ ÚG>ÂÚ,kúÙÿïÄïéúbaì{0I+²ûö:ú°¾iW}«ø_ÖÉ?¦XëØ«ý²=ªªðÂëaaý¦M0Úiz_ÚØÖaý""""""BÁw3Ô°O«ö§Bø¨°UÌ d_Å/§æE?Çéúíúÿùf¤cøÇÿõÿÿÿÿýÿ×þF?Çÿþ½ÿÿõ2]ÿÿÿÿÿÿÿ׿ÿ×¾vH¾?ý{õùݾéÍc¼®©©Ø$viüå]ýÚL2,<U]÷]¥i£ñÙ;;RCýì-D|BôV2|(êº{7¼êJYeSPO'ùê\RPDZ¹8'3AOA33 Ï*ðD~¿_ÿúa4hza4Õ>Âh<ürø Íkffq2fêÿú];¦±éůa?Tý=zyÆT.Y<ôr6Èl8^õþ×íUbÓ°Ö 5áî» :TõÝ=0õ 02@Í fÙÈôhWûY$ývBÓa~h{Ë.1;ÃEÃÖîXÿ{N´Â{¦Oü'ú¿¾J8ÉEyÙ⾸§Iëô'8A¿ÑcÑ7s;vkôûÿÓ׫Èï Àô¯÷8]?ÓÂn®ºûÝ'¡þ!7MÖèÏ0 ú'Xú¯þ¡8
>¡ýèÑ21ú¢c¿é§ªa4ÿÔ'§û{`˵ 2qAÒ½éá:WÓz\Sé|Si7H4N:Ìú}¢ËÑnæ¿®·Ò¥þ©¯¦öÿzÒzëþ¯ú®¾'ZMÅ?ñX·£Ú.è>½Q8q*>¯.)¦þ©ê×Òëß½úöÿíz}¾'éþ¯úwb´®úUÓëõi .2àzè>xa ýë¯þ^Ý}×k{ÕiýY:ê½÷^)'×·ßI´Äð'UÔV{Mÿ ÂL:ê3¤¶êýózþ¿ÙêÖ]:·úÍyow×÷ûîþÂöi¯Ý¿j*)¯ö+Øø4µbqÿØV&¾¶êhÏé>ÏM¯öþh`¶ÖA í0iú ÕW°©ëü/øë¯ö:êÓ 1êÝ=οaa[ÿ°¾ëx?±ÄDDDDDA Á»NÂé¬0½¯]Ö¼SKZÕÅ1LRZìd{÷õ¤""""BÂaBv©-úk®õöÿak^ßõÁÓO0¡½ õ·ÿȪ+ɨ0_¯Äb±Kÿ°" ÞÆ*¸¯Ò¿ÍÿÌ·ÿÞºMýÿÿæz_ý2½=½d;WOô£ö2":_MGÿU£ñge#__Å}¢NùF^Iõ5ÊL Âó?AæF¹HøÛ<Ênn V¾úª~ÐiáL ÂÐfqCpÌÆ¶{LÌ33Aç#ÒZúkÜÃÓôýSMô¾ö©Áfq¶\Ìw¿OÒÑ1Ú.:49¯ªrc×¥ü01ìúkö÷§ê'|Ñ®¸m&â±âg=ܸM~¨_]z-ÞôôDÇ}&ÂDþ¯þé¶êºtTÿª_é6Å<»æçPõZÿZMù?ÕkÓÓkÓë}WMÕ¤õ¤ÛÅ7¥ú¯Øý`Õtÿ_ýýôëïºM×ÿä?ÿðú|¸ÿͽ~ûëýtí×·¯öñ×Õh¿®Ãßû Z÷õ~¿õøoù_Eçöÿü:½~?_ÿþÿè?ò@ú¿ò4×Pß§]%þ¿ÿ·#þ[ía}ÍmpßÌ?ùßõü0ãÿÞýÿéÿ¿ïoû«6½Ö÷Wü7ÿÿísöúÿfjÕ5µ÷úûÿׯ_Ã×þÂG.Ëó8i6[_ì°µûýêÖÏÿjßÿwýX¨¨î8þ'þØV&z,q°Ñ^aéÌ&8Þ¬/Ú0ø";]/íäQ×ý÷Úa{_ÔB¯j+âÐkkñM ö?bKü¾oStÝÕa¦Õ~Âu饷b£÷úúö4WúDDEBÓC0MP4êva0½¯i¯ø®øB$èDCA4á_´þ¢""80C\·ic~+®×|F½ù^/×ÿÿ~½úÿúÿýýô¿þýqßÿÿÿÿò6¾¿þ?ÿÿü²-¯³4ü?Çÿÿÿÿÿÿÿÿÿ¬Òcú¥³³.?z"uÕ£µJþ úcA h¬Fq¿ýêVYdH¾ÙSGi>gUÿ¯æyNH0Ag3\l~AöhfqB5_ÉJü«_ +ÿw駦OAðç£lÁAæ arSÐHDØßúú&é=4õôéSpéý°?ÁgØA,Ï0Ê"|ÜgÓ!«úw¿Ò¯¢ÞÆ'xará§h´ÎþN½tÿ é ô© S ü0ϲþ·#|×þ ¸ Ý7OélOl'Oï3Ñ7a ¢ÇsÛv¬é®¾é¦Aµÿñwÿõ×KMStÚ]üBnOO¢qot\^g¦òÁ½ïUDÇ~~ºÂ}Âu}®×®ÿ¤ýX¿WitÜSrði'Nóôú44N%P4}[ŰAý×CÿþA¿éûéþýz÷ê)´é²ÈZ?]ý_ÿ]?á?þ¿Ï®Ú]=:O¥º¯éÒË °4ÿÿö&ÿÿÿÿCú¼À½h}qý×íô5Õu×ål4êÞ¯ü6ÿÿÿDãþú&?ËÖ¥ÄúxÿïÝ9d&!~>»ðÝwÚýþÿÂý¸ûöïUý)ù Ù_õ]wý/îïÿéÿäa?OȾBÏ^ÿþ:dÔ4Búì{¤·ÿï¯këÿúüºü½¿×þ²hBü³¾?ïµm}m/ÿSëýÿ×Ñnö¿PÿÒ¯ÈÙ* ÀÚÿÛù»Â0ø";JÒþ×í+ñÿ³ÿúú·ýjßþ»þÁMqý|=øaX¯cb·/ìW¶½aÿÕ¯úùú¾Ï^Ú½í¥¿uùd8/õö¶HuÅUÇ×±\WöÇeõì"ÇÙ}°T²ý ûFyÄ¿úí¯Ùü«"?ïMBökö½ú× ¬W¼l~Çh4½´¿ÒûL È0^>"""0B¢ÂAûaS_M5õµ a/KÅ~ÇìPLÔùØqDDDDDDD0AÓ° Âi¦^Úö¿¯jÉÁÖ""""""" Âj[XkØJpúX`Ay{P$,üD³ò$«ðä3ÉoØ0áã@_ðeºÌüoP`¸/òÒpd-è×áîÿW4ÚùÚÜB¢+hR+í~Öìï#µíôB®C A}mU4Ó;áÖqùØsDDÅ´}~ÚHï¸"ºÀ1û kL«; ÿLP@.ºµ#â¬ÔRÁ}B+ª;ú-×ã«YÙTa+ÿ#Fi2Aç#fH3Lämd9bCÍËëâ6@R¸°cá©ü Ðiè;5I}ªü4{3¹ÌÙfggFTy0ÉgBõÊã`¼OM?Â~¾·ú~z¦j0@ómS3 èÌãlqÎdC*â¹±Ò#òßÌûâaÜþaØan°ë½¿úi½¿ÚiêPø ÍPL gã8é²0d33ÇâÑîW.ËÒn)´NÇAÐMñO_40¾Ñ8zûS=¦¿¢-ì.Þý={ Úá¦Ða08ý¿+ÖÇÒzé뮩¿þ+úþø«Iâ þMh¸z3ÿÑ8ħË^½ õ´ÓÿÊäÇÿ¯xM¯×õÂé¿I¿úzºt¯zIââx} < Þú'F|ÑÕQ1Úé~Wð^?WNþÿý6×ÿ×Ó¯]i?ZZþõôÿãÿCÓbüÃÑnÒy8z@}A{úÿ¯ÿÿZÿÿý_wÇzÞº~¯ëmÛbºn|)\Ô0v`ÿïõûý_©q?ëÞ ïõ÷ýBgÿûõZZOOd"sRÇúÿÿÿÿÿ¨×ÿÿÈá+ë0*ê½_ü ÿVuÛP«ã׿øØàØõدl&}í mo´¼åÿúëÿ¯÷ª,Ùp_þ½ í5u¿ýÿ©ÿ¥âþ**Eºÿ×Õ°¹Åþ¿çë\ÑúT øa5@Â|AªÝ õUûMPi/ÚöKí5íuz×Äãâaúkö?öÁXáN9òÐTDDDDDDDIÓC´Ô ªa0¸M5µõÿímWìñU¤é¹òâ¾"¢"""""!NÕ?Ö]¯¯ö_Åh.þWÉ!RA® û5½Us{£ü(¡¡xøÑ6$ÿðaE5¹Øªøµ¾=ÁÒ¯RÐiÿ)à 8ø`ø°¾?2Zf@ª©´FGa(ùÈè÷V)©\ùV§`o$â.uéÿñÕ¦Æq[¾¼ÿÓ\hÇaÝòÇ òO)ýfW±UhuüÁ"1`AQÈÙÎ90"!d÷Ëuãßû §PÐ~Aê S3ñtÔÏgãqr9A³LÛHJx¡~WW}5OUô×{×OL'k§§úøAªyrA ÈæÙÈ×wÑo.<9!ß;Ñ&í1;åéÿ×Oôôý% á5AægãñÑ"AÆÙ2 ÌãmÅ6Òãt:_õM7\ ÿ¢Ëþ'~ ÂþaÜÄã¹oªé×ÞAújÓ¿õï]tðëÒñëþ¿¯ôÒp½:BüôôhéþôIé£úÖ«té=kû úµýú¯ô)þ¿y8{ôh¯Eo¹Ráó÷ÿOÿûíÿ_OdAô'Ûÿwô×ýÕÎ8/¯ºm ÅÞí:üSzWõûÈá28ýuõëèz÷ßõøý5ï];×ôÝ7µûÓkÿøãïÿÿ×°ÿÿÖñ¼_e9û×]}}uÿúà/ÿÿÿÑ8òoýê¿èûCÞ=¯éÿÝUë¦ëÿ-Aaýn¿ÿ]ú5®ß×éuþÃ×úCÿÿêÿõïÿ×Zëûþÿþ¸"=ÿr4>ý½½}¢qÿÿÿýþXëú÷íú_÷úé+ûÿÿP_Zú]ëz®¿þ¾qé³Öï[Vÿý/_ïÛÿ¿ïÃÿîý~¿¯þ¿_û`½CE#°¯öÞú®ºï¥¥þúû߯ßwÞÝÿÅßþ6?b¾6+ü¿Ú0þÂ°Âæõ÷³Öÿù?¯áUouµ×ýýÖ§a®Âa«U¯ñ^ÄÃâa× 'ײþ_c¥õ$u§ÿiºýÓ×iǯa0¼0¯i¯Úam}m/uÿÃYÜJ±3í}v³8ô¾ÞÖâ"""!Ä0©¦kj¬5ì'kÚÚ¿ø¯¥ö+½ê?«#ÌWýñÄDDDDDEDB"ì&`©§öÞµ÷ýÚkøÚÿ¯Ð¯&vv/a{A¯ÚkÒoùÌE!±!L&_~R®"""ËqaB;KºâøÔWMWã_ÿýú÷ä×äÆi)ÿOS²ØïÿÿÃ:þUWñ| óqÔÊ| Í¢'ιÌÏ:Uý ª¨A ÏÆu"Aãñó$ÍHã!ËÕ=4×ÕBv´OÐh0Âa0?áø`»DÝÄïwOÚ~ªëMSÿÄñ§§iÿU?¢c´MþÅþmáÿM¥ø½q< â.¼Bzmn Ú'âÇK¯×MÕUßÂt¿é麶׿ӯâë3íÿÚ]'ºë¯à´½xCúéºïuÿÝ{ýqú¿Öµúîwiëëÿú'¯Dá}q^ÃþÈâ5ßþE§ÿè=ÿØümUå¨ÿþòEÝr3õä"ÿÿKµÿ_¾¯6~]Oÿùë×þß«¾ßÿRÇÿm{V×ü'¬:³ÿ½¦Õ{I¾ýõ¶cãþé×ivµüô·Ëx׸GÿS8¦6l,Nÿl-6æÊ?^ÕRµý5´»Â)ÿ'OᦰÁ8a0ía ì&iÒû ª¹wÄDDDq`TC aa ýâÕEsµDDDDD0üdÎHkÔ~M{ÿÿz®ZaJö5äAþ?zÿÿÿ«õïuä0?Qÿ_òl¼*µ»èWû.#h÷â""C 3!°s9c9¬ÎTB;Új¼DDDDDDHCØ9ìîLr<Ï¡æS6È 1Êr¨SÆPRÉL¦¹Hà G`mÄ!Åãª.·âAqÄN9á9rPä!ÛKâ""@ðG rà@ä\! ®9h+A[ ¢#ÈQÈ£\q8än"$6Chq0çHAÅ"Ccc!È`rKãjH)Xäs¹»dq! £cÐ;#äGb8-ÁáGÉ0âBLrrCä0çÃÖ`ä"":ÄDàV8@Àä8â""Á#DqÌ8rPä2PîÄH)B¹Ç!¬8'Ãn9 qÈj"â$09cG x£äCHq ¸â¨ãÉrÈ(;¨Î9 QÇR1ÄHQÈ`rÇ Ürc²8ÙÃqÄÄÈlGbC $8n8RHeLq!Gdp¤x ÈâÀ Hà`¤p<)p.G·RrPäA´rCÓr x5CPrÈçÌ8ÓL;b"DÄÃØ8¤A¥ÈÇ É òC!ÄH`rÃ8Ã$#"@ÝìG@q!ÇÈå$r#8jÃ$>$2q È9¡Äî$GA r:DÇcÎå¸ !Ä! ¤â Ö9ÃØ8Ø8.? ´8fDqÄABcu p8 (âBF8ÊâaĸäÜDDDÐú0ä4¨8kãkHD±Èi""C@åLr1Äqñ=Íq \r Ç! û>rüD ä""qÉB"D9Ãg"aÄDDH499! r#£ÀâE! Ð:!ÄDDDH£ìH6"@ðhDHiXäG î@Äâ$:B,àA3ÙÙ3àx9!Á[#²8Ç!G,r"C¸x¢C ·$9ÁÈÇ"AÇ »k㢠Ç,q"w8âAsAqË8È*aÅ$DYñs#hDHqÈj"AqÈÇdp[(#Z(Dèò.p3 G#¡ @âCH£âA#rc²áÈäG B8 ÃÁáËP&GÈâÉ'HÇ$8 r1ÈAÄD¨'Ëæú=D|ú8EãÈÞGâárcÐYáGñ#HQØ!ÇQ"@¸ìqãÀä28ãÜÑDtGè»/¸`Èà¬G0+.!2Ár ÜcRq;Nâ ÑV"!Í¢ËäpÔ# B=;KEZ6ó¼¾GFc/Dv\!#v_#ä|ÀñÄDDDDDDDDDEÀðg˲áàxXGä[`¥þ[©q:©ïâ®*#Ù®yoÿ[LÉ+ÿÿ÷¿ÿÿG³¦UrcßÿûäâÎEÆpP@Á:ÆN<Áá×"¼'q 0Aì ôa4ÍÁ7Ë/g3t.Èl§Èÿè¿Mv!Úzqzh>.ýSAê¡h0^7ÁIÅÆ GÉ2(FÑc>;z1Éð7ûDðh9,q64O#}|XOâÓPMâÓOM ÓNËÀÄQ{á=4ô&ÐO ºztä±¢|þK(4\4NÚ','§~½õz}+IéÕéº Ó}?ôôé¸Aºáá¿r|Ø$_>8tYívú~ºzµzþ´ßúm+útÒtt§I¸PAõÿÿïZC]7Mõÿ]?ÿãÞõ]?é=RO×oIýãÿþÿÿút´'ßK¦únºvþÿýëÿÿÿÿÅÿÇSÿ§Ûÿý_KßÿÍv\ÿÿÿÿÿaÄ÷õï]ýݵÿÿÿÿþXÿï?ÿÿWëÝ}ÿõ<ëÿÿÿCÿ0dÿùOÿÿ×_¶Óµ½Ê/µ´¿ÿòGÿ¿ÿâ¾ë§íþ6×êéµmoû§ÿÌ×ýßûe"»(ïÿ!ÿß¿ÿxký ´[ö¶¿éÿº×þ»ººþÚÿ¯Úéwbaÿ°ÂLIcí/°%ÿÿÃKûõµµþ×óý×¾ùõö¿¶)b¶+æSþûa$¿Øa&6kôÚOêÚõkpÕ}ið×í5ÿÿ±_ûÄïþKþÂ^ØWâ"""0@Ì0'k Âßÿ|5ÿ´ÓM/vÅ/áö&ÄDDqDC24ôa0ú ×é5¦Ò×ñÄDDDÎD´-aÚ {ÿ¼Dq¡â:×á m1U¸a%ÿÿÿÿòÖïQÈTNY+.}2nHV ý?Ü;4zÿÚVxñH·ìhÈ úºAÒÓè+Oeºoá9H Óû!@EÆar¿ÿ!fM?ûIYÚBµ7}ªðCOE¸Xzz|KrÀÙÒuòÈL2«IµòÈ\.(¦¥ " §BXRÉ0b¶¥ÀXaA\ÆMÖÁq¹7$ÎÅSyU&á`¸Èh%"7&è2dÁ è2\à :£@ëLa ΰ`b%Á!Íq!Í Aú!lZA ]ä*st¢ïä6KMðRnj _&ÆAMì:õ&ËAÓÊë(í(0`AÍÊXÔNÖ|êÛɱ`.Ñ7Rl.Q2SjM0míLììÔ6P33¸ ɰ\pØ2nO&ÚûgsäØàÆáy6À#lì0roɰàÇÖ Ô·J<ì¸}e++v¬-¬JäÇ!ÍFIÃËp@#ÎÆÃÇËr b°È9²¢å¸¨1yظ `Eùn6x2ÊDeº@`í_©Ø '-ÁéÝ©rÞ°aýAvQòÜ0_KHílÅ÷éáAî:A0¨o2'²pcJÓ07e0~$_HLò àÁô@¼ðdKÏ ! '¦(²Ø'Üd¾<·uª-Ò"º¨|~ È#!YeµT{X2RÂÁF`¨åX?AÙ2ÊZ Ê3¦A¡ Ô¨ ÒòÈ!´ÒË&ÂA´M«òÉ@"0ÓleË%²Ð² Rn% ¸rЦ dng- CTÊc-@ÇL§,´ SAsbh\Ìl´+ bË@À q!ÍZòfÂ@ËEÂä,©`FAbØaU@Ù&èì Ã,¥¡¢Mü20`0Üȸ4aQ "MÃ,ªx"Ͳ§äØÃYNI°X.@Ã,°É±`.2ÈI°¸!Y Ay6äÜ0, /-Éåu\ Ã2;,à&C. Dì0Ó:3P0a¤á a³`¿ÎàÁ¡!äüHsr¨\§¢¦à¨0à¼suH0ä3Ê®C9ºÌ0a.H0ɸå¹@ÁMÌg-ÄÁ¡Ãùn`#çaä:ÃMÃ>W2ÊÎðü0ÍY6$Úá"\§\dâ`@a®¦ 5tØa¦M¸R@.Ât¬èÃ&Â@¸0\)à M«i2l¥Áq´A²l 1ÂW¦H96áo#µBM´ú DµÓV[ D /!×RZD`/×)ÐöÓ©8.W)Rºc§qÖ NÁHá\ÓFvÁ¡! ÇÊàÓ îD42å1_ÝP í¯~øaî¾o`Áú_],=¿ÿ»aëß}\{uÌ+®»üVÜ0öÒìqÖ?þÖØaýzü0ÿï®Çú|0úûø`÷â:AQÿðúkø`ìDz@úàþ]Ò ãðÂéÓ²±ÄÿùmQÿÿÿÿÿÿÿþSB>WBàåÁr8ÍåÑtjñ x,Xæs9M-ʲù.ÌH4TÄtHæµ2äF2 Ã¥¡É&ÉÊ4°Ã¤l*ÁCMCuO2¡øa§¤áv~iý4Â0cª¢CÓ ÐoFg{zÃôô= õ°¾aé³?ùn¶áªiãGÏ/´[c÷AùÃEº5×®q"Ü(8½?ðâ[ Z|9dP·éw, S}ØrÈ@0khrÉÀ@´ÐaYiÄ0äÜÈ 4¬ Á0MÕA Ãp `Ar°`0äÜ\97HÔ&é
2. Planes X and Y and points C, D, E, and F are shown. Vertical plane X ...
Vertical plane X intersects horizontal plane Y. Point D is on the left half of plane Y. Point F is on the bottom half of plane X. Point E is on the right half ...
Planes X and Y and points C, D, E, and F are shown. Vertical plane X intersects horizontal plane Y. Point D is on the left half of plane Y. Point F is on the bottom half of plane X. Point E is on the right half of plane Y. Point C is above and to the right of the planes. Which statement is true about the points and planes? The line that can be drawn through points C and D is contained in plane Y. The line that can be drawn through points D and E is contained in plane Y. The only point that can lie in plane X is point F. The only points that can lie in plane Y are points D and E.
3. [PDF] geometry-answer-key.pdf - Louisiana Believes
A. two rays that share a common endpoint. B. two line segments that share a common endpoint. C. the measure of an arc between two intersecting lines or line ...
%PDF-1.3 %Äåòåë§ó ÐÄÆ 4 0 obj << /Length 5 0 R /Filter /FlateDecode >> stream xµ\Y$G~¯_Qìëµ»¦²2ëhc06 OXÌZÙ´k° ÿ/"ï>êH´ÒöttUTV~wdþÐ~ÕþÐÎCw>÷S;Ï}7gÓ~hG½tã<Îö>¡ C×ÓuïãÔ¼o¿kÿÜ~Ï?ÄsPÝyÀµf»K7íßðEÏúæÇwßüû?ÿýÛûöÇ`$tѸªíñòï>´Ïø Úßþc§Ñ?ÿæ'Õ¾ûoéÛÞ×0ö;ý¡0z½ñÜwjÂPÀâË<Ë>ejÑ´ÑÍX¿¼j_¾möÔ¾ü³ýÝ?dǾëû¥}y×Á²0gª= Ysÿì_=µjj_Û§ö¯íË×=¯qo3á5ù1}ø°_:Ó>þü©=ÍÝÜ>¾yjùó#Khh |Å× ôn1AwKrSüíë'wùÛÀñcGyýÔäúÄýðàqrqë[ñÄÎ1{v·x^~øþ0 Þ]á)~`þñ ºÉhýã0ö&® à=õEû¸âIoÆÁsÃ7¨À},¦"q,æ*Ì÷ôeUY¹hââUça¾´¬h1 ¿T3a; º\7j5öí¬u«ç©5FóýnY'ÉìÏ$ã¢5«¥Ôà$sÊ$0ñ?dá¤ð iµRùÀÒ;AriÑ@HH6@ÄZjè+æßìå¸7aqGѾònÐkÖë±øFR=½YûF ÐÃU*LµAaB9ôý45¤à28ÍYgôêíÇ,0"Ö)<-Dä%MóØ(; 4¸Úop×@VO âÏî©=· $p'høÉ',È>s0¹Å+åë"ÅçßÃäüÝA² líú¹¶ jÂ3Y@GiLhS7)²ÔÞHßµßòàyøxÖ@ϺgÕ. Ñóu1[Éap »^¼GÙyf¼=^j p6oý$ ãORb@Ô(#+¡YúV&CÖªµ~qõ0ÓñzÚ<ÚaZ1q9BUe¸gÉÞÆÄièYua¶¡¹à0üáÉ]ûýbcðJxë^ÔU©¦©;4|¯¦³æi$5)m0ÔÐeDRsHX "³IGQë¡,xßA~[-ñè=(º)HQv´åqè>G9£kReÁ±"Ê%ïÛ(g®Æ1Q`QóyJ¢ë¢l bëhÈúÜéÜ Ntd È5üQQë,xßR-IÆ÷9lj{^a=KÖa8½é jG¨¥Âº5{¼®ñ|îæèuSdæ ´>÷ºèVG:ð 1k]U-9ÖXð¾1ùÖHîÔÂOÞ!Åãâ¢J+ÅPGË@^(;I1ò°täiª ²àXä÷mâVÒ+Y²ÆégÝ©èY[-i {Öc$Y >õäsèG 2R%Ë0ægÊCm F5ñè=@çnÞµÚÑ2 ÇÅÔÑ&TèelZ°¬ tÉü6ÐAnrSU G¢ê¤f_ò²±J²KoúÍÕd£4ÔÍH$@:ø MmÀ%Ëæë ¯ #Ä1="g?RÄ-C4´Ä#©âçênÙ XÖD¼d.GýNqýÓ'=IÄ©XGÆÏ@ü¼ËE`s*Ä">S1`t4¸£-6êNWtqE[Y©KÌ×!^+Ef 8°GÄ{Iw´pÐ8O $
4. 1.3 – Coordinate Plane and Graphing Equations | Hunter College
The coordinate plane consists of a horizontal axis and a vertical axis, number lines that intersect at right angles. ... When an equation is in Ax+By=C A x + B y ...
Using intercepts to graph lines
See AlsoWhich Undefined Geometric Term Can Be Described As A One-Dimensional Set Of Points That Has No Beginning Or End?Which Best Describes The Dimensions Of A Line? A Line Has Zero Dimensions Because It Represents A Location On The Coordinate Plane. A Line Has One Dimension Because It Is Made Up Of All Points That Extend Infinitely In Either Direction. A Line Has Two DimUse The Completed Punnett Square In Part B To Answer The Questions Below About The F2 Generation. Note That Questions 3 And 4 Require A More Advanced Evaluation Of Probabilities Than Do Questions 1 And 2 Because You Have To Consider All Possible GroupingsWhich Diagram Represents The Postulate That States Exactly One Line Exists Between Any Two Points?
5. The Coordinate Plane
It consists of a horizontal axis and a vertical axis, number lines that intersect at right angles. ... The intersecting x- and y-axes divide the coordinate plane ...
The Coordinate Plane
6. [PDF] 1 Halfplane Intersection Problem 2 Divide-and-Conquer - UNM CS
It remains only to show that the points in the lower envelope are ordered left-to-right. ... this intersection point represents a half-plane that bisects R and B.
%PDF-1.3 %Äåòåë§ó ÐÄÆ 4 0 obj << /Length 5 0 R /Filter /FlateDecode >> stream xµÛ²$éyÏu³ 9<.UL8[vXcËÐ,°Øc±± \7Á)×ÂófuNgµ:ß,Ï:5ÝñÍ÷ç·ßýöGo_¿}ïû?Þ~òó·aûùùOÞ®üÜñíþßþâÏÞ~ºýëò5%:¼Ýùãy¾<®·ÛÛO~ößþð6\ùç_øö/~öö½þÃOß¾ûý_}ûðoß~÷ÃöÿÞÁÃåz».Ë7@¿ó½ úO èc¼Ãðx´@º^æu¾Ý[ W:\çË}¹O-нi\>êà7ý½¯ajLÿ¹]çË8õ7ýwô~¹°çΧÿSúX.÷þÈPîs©>¼Þ/ëu¬©¯ !¿ÖßôßëóÇëe½_kú3:ôZ¿þs¹,ËãůÇ˰^kÞÿOé|¿\GNý.#´úér¿<î7ÊGkrPJ®@oãå1Î5¡üù¨ÓÛ}®¿éOÓ;oéyß©\±6{ÿF]ÇËmÖNÿÁ®u½ÕÔÕ *z]nµèeN×é²cýüßQ hSliM¨ÿ¬@ѦÃ0Õ¼¯zo¸Rõ'U5Ëíq«?©²é4ñI×ÞPy&< É÷ÿJé4¯ek N§eÖ¦Tjº eaþK}ý}¼Ü§¹vy~K¢£Æ ¥´%j ¦õ~Ö¥fSJh²,cøøÔB V>_?_Ëmì=¾eá²>z6UûW~¹ÍSMý)¦ãz¹>îµw梤ֹê¯ù¶Ö|ªoË4ßkc¢ÞÙϳ>zÙ×X&°ÞæÚüJýÿíßJÊþü/×ëµV}j÷æÇ´Dë+K-Ä¥ó2×,¥²ÍK¨6'£jÌ~-úYF>é2×ÄwDýûØ'z¾ é#m6¿!öoÿtñú-c÷)Q?¦[üë¿<êû¢ÌÚø6|'éº?°ï ·]çe_ô;Ï @· FÃCT5ØpÅsÕ¨*ðû5ÞâcwÏÿ û¦8° ; (ûcH¨ú¯è4¢lPLÿ¤øØË5y¨Za.[rµPÇt~`½/¨_à} r+·)áõ+1%·r}̵@iÆb ·2q];L]Jo¤U§P wâ¿ÅT÷pÇzÑwZÉ.lîªõVâë¹×'®£I®ÄXí7uê¸PR©e_¿éHư¦¾*ÊIø½ìkÜ6·ÐÚ(IªÇÉì8Ê?)ÁÐ ¸ú/ÌÉØÌ½æóO:dl©ïïÄ[JM¡êßLýmNú¿ªÙq¹]®÷{£UôGÒ@·¥§¾*©ñ~åù »ç«>Tü-PuzFêí5K9õI.Q£¬1õç?Ë´àèßÔ1}Ü.Ó-¹µPi²?]Ë<>j¯G?±º.µæS%5ñh×ø*Pð25ï;Фÿ¯kýü?W: ?Ö^JÿEñ/øÚG2áñ²¬9Ê¿éLµµ:ÕÌâ´,äAzêkÂ*©úùÞS_ýhüòËDµ¦}Rÿc¹×JJÍþt¿E¢^éDÀTóuS<þkE9âñ_ïIu:Z-ôè_ 5_¯û4X©ÆÐ3©`õóÏ´Ô^ïKùÕΤz!kæWêÏ#Õa¨Uj):½oéä¯Ç9_Oø'ªOfÚhæ{oö5ÓFsïÓZøIõL÷>%÷¿Mo{d«[B©×3YO¤9ýù8çWBÞÓßÖçSý¹o5N8®ÄåDû-¦ÎR4ß-EÚS©ÌR=×ã|:}LÇëóÕãùTű¿×ëaÍ·Uk²@¹mcßtªÖdAGßy16¥:N§½lâ¯'+3>Ѧýe¢ò7öcÍJP°ºáLÌ"ó_Rú9z @é òGÚ»¨¦ÌÓÝ|»Q*1UI"s°>®ä#J êê?¨Nbî-PUy!]~%¦J¨ÔõîWP%Pe{êXѱ¦¾úe¸dzSjLúô¨ÀÖå(!¨&M i¡(éä]øIï&UU6ð ×:%P'>]~tM-PuÊ¢|B²¹ú'lSFy~a²g¸ZÈIßaú6ôýsCqÿ@;iýO?AÿÔã0ܧ¤=Z_)LÂ~R³SpMºüÈÃ'óñ#o¥¿Þ6øG¦gñAßN±~d\Áþü }ä µçäñ³yÄÙ¤þZNtÓ²î>³A©âncwþý£4ôà¿ÅÄ=HÉ>þu%vãt5 Õâ½3SÕTß}H;XÆé*,ÝäÐH»i®ÉÚFF_úð:¹ÅK'9 LänåÉìg¥û.7R~øIÐ?IO:=Ë|éÃÉúÞFòÓ¹#ª_4hÃþ-qØén+Aªoµ5c,¤§*,Õ±7¦¥ÔDúðò Ñ¡K ýF²÷eÅýmÈ£'>©ïv µ1¢¡Uêø<à[êRµÆIÁ)1Oó)d">2Ò÷ÈdÒ9N/Aú§Ü´}lÙ3BLÞT;¦'øN#K ¥Êãþóþó ¤Nñ¯¦´[ñö/ËAí ½?6bàÉÀX²¨>;b[|ɨ*"oà˨ûôol+J *ç×c$;LU,ëÛá; J¨tl3Ê&îºW8Òp{ÔÔ÷ç3 ?ÎKLýùñ_³ð£ªf}ÀâÎtÔe´üÌëM¤tHªY'^¡ÐÙU¥
7. [PDF] Midterm Review - answer Key.pdf
In the next picture, the plane that contains lines a and b iş. 53. The ... A Lines x and y intersect at point 4. D Plane EFH. B Points A, B, and C are collinear.
%PDF-1.7 4 0 obj << /Type /Page /Resources << /XObject << /PAGE0001 7 0 R >> /ProcSet 6 0 R >> /MediaBox [ 0 0 612 792] /Parent 3 0 R /Contents 5 0 R >> endobj 5 0 obj << /Length 43 >> stream q 609.5 0 0 788.0 1.3 2.0 cm /PAGE0001 Do Q endstream endobj 6 0 obj [/PDF /ImageC] endobj 7 0 obj << /Type /XObject /Subtype /Image /Name /PAGE0001 /Width 1693 /Height 2189 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Length 8 0 R >> stream ÿØÿà JFIF È È ÿÛ Å $.' ",#(7),01444'9=82<.342 2!!22222222222222222222222222222222222222222222222222 2!!22222222222222222222222222222222222222222222222222ÿÀ " ÿÄ¢ } !1AQa"q2¡#B±ÁRÑð$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùú w !1AQaq"2B¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ? þþ(¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ (¢ J)h¦RÑE %´R(¥¢ ¢ELÅKE1 QSQ@ñïMǵE2Hi¸«P^x
8. [PDF] Mathematics - The figure shows AABC ADEF with side lengths as indicated.
Missing: vertical | Show results with:vertical
%PDF-1.4 %âãÏÓ 1 0 obj <>/Contents [ 4 0 R ] /Rotate 0 >> endobj 5 0 obj <> stream ÿØÿà JFIF È È ÿþ KM_654e Q76ÿÛ $.' ",#(7),01444'9=82<.342 ""*&""&*-)&"&)-2-))-222-222222222222ÿÀ ¤" ÿÄ¢ } !1AQa"q2¡#B±ÁRÑð$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùú w !1AQaq"2B¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ? û.( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ¹_kÿ ðøz÷Yû?Ú>ÎnÛ¸³ª{}êê«Ê~7ÿ É=Ö?íþ8ÿ ø[·Ä÷>ÈfCæJ¯sÊý+ÚõÍ^'C½ÖyZÛ=À]Ûw RÀ}z~5ñ,;[jg´âÞÖD@2dçÏo ïÖ½#Å>#:½Áü£qypWQo%ÏîÐöûâDtñwPKv¸oBªY½9 À:õ¯¡b24|crøÕL¾[°qn Æv¼aþN¦¾ø¥ãϦ§éñ!»ºw¤XQp>êòI< =Oiª×·1ÙÚÏu.|¸ci' dÿ *ùþ/ö¶6¾ Ïkgy2¬m-´&&R8ÊæHã$Ç5Ùëþ-ñgþϨhp,¶·r[ê_g G±Åäãæ^0#(¸&zW~#è¾*¾K(o¡á3(¹`eÎ$Èö¬ï|IÂú´iÒæ»1[-Ä$ª-Ç=N¢¶6Õ¿s¶î%×× ø/.øãâ>»¡øûIÓ¬´ù¢¶7pûزçuúW$ÿ 5mOPtÑtÛmTnoËù³øÚp9×µ }_E|¯©|n¾TNÒm8U®dÔ²¤øWaäzF}Cê¿|q/êÆþÒ+mBÙLÂå£ #rç0AÏ_ÈÔ诼WñÆâ×XºÒü?£%ãA?¯31i\d6ØÔduôâ ülÔÖòH¼C¡%¼º¬òC¹ Ý FÉ?8 ¢µíJðô1O«_Ei²¤<Á8ý:ô«zV©c«Ù%öuÅ«çl:þ>ÕóÅÏ_ßx[dM³'¶»òØùìÐäýÒãùV¯ÂÝÛÞÃá³k9d¹íh[+Él1Ôã@áïÞñ ôçb[ºÚ 8$cå^_|.Ôtñ~-ü/gg-ëNÐ\Ay3ÕcbrJNkÙ¾"|NÓ<*Ùù_jUÞÑÌØ A×§@A [¢¾fÓ~9Åö¨WSÒá[Y3ºK+¯9âã9d* rGL~ØüSãM+ÃU®¥3µÊ^2¤vä°È#$ ¸Á'Üz í¨¯ßã¼±Kûßâ-å2.rO¹þ5ï~ñFâÍ4_éÎûCl96ô#èG#K«¥Üo2º]Φ(¥QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE QE äÿ äë?öÃÿ GÇ^±\÷´_è×:=ä³ÅÆÂÏqµÃꣵ |ÇámµßxòÂÜLÐ[4"¼ÒF¬è Ë(üëÌíìQ·²·¶Rú¡mâgùbyÊ#ßLzû;Á^ Óü /~Équr×<×¹*Íò ʨõ=kðçÂmÃú¥¶¡ku¨H-¥i¡¶ÑâF*Àî7dsÔHxúÞ;xÊÝVÐÁkj;*Û®gÐb½/ã?5ýö=F½[ÓOûT÷ Ò8%Ô*çîýÂwrG#¿kâ zWµKíJ}KSKÝtpÉOBFBóÍiø÷áýå·¼7sXê6ècKU[r®§ï¸ä`Òcæ cÃÚÖ£h^ ×|Fú×ÓD-%§Ú¥·îfê¹ ÉÍzÿ Ãey|âÅó´¨ïä(ïK§|Ðã&ãUÔ¤¸ÏË4±ú7Zôïø.ÓÂpßCíÝÜw¯"Ý »x r0 %Ú8ü!Ö´7\Ó®µ;»k8åÒ¤Hå¸*ÌG à7ò©þ,Jø·T)FÚTÈaûÂÖ»>ZEöl5ë«{)2ÞHO,6r7pOSÿ ^ý~XërÅ#köûl¢²u&$Tr;@WFÄ»Xm>iÖÐ.È¢ÉT{_ּʺáç>ÌûeãäÅ7 úOÅÞOøxh¦ñí´L* ¡qÓµPðOÓÃ67ösÞÿ h%ë&øBmÛ· ñJ8ùÂ:~¿«ks' u}6é,É-ÇÂÇæ*-GÃZÀÔ/5_x\ëL»É|ÑÈ ¸ãË8Ó½kºÕþÍ .|=}%R!à0x2Iù]'qÐóè<ðbßHÖ"ÖõÕ»»_:( R"W!bYp{së@yñ:U6ñ+£ñZÀÇCåüüë°øg ü{Ùä1#(Îß$îúgúó]þ]ëúö©ªÚjöö©¨ÇKÆB6¦Ì¸Gµu:ðLþ&Òô+}F;YtùVA#ÁæÂé¸zæ<ËÁG'ïJÑ(w[;ò[dûlÕ÷'®drQ!ÒrÝ Þ¼þ¯YðßdѼ'«è¨¬Òj>y32&Þ±àuÆk+À åðåíä÷Ú7Ñ\Y3@cù3~cÔf±áâ?kݪø7Ãzw?5¼±ZEöYÝÆÑOAÎqÍs¾ ]µÕ
9. Intercepts of lines review (x-intercepts and y-intercepts) - Khan Academy
The x x xx-intercept is the point where a line crosses the x x xx-axis, and the y y yy-intercept is the point where a line crosses the y y yy-axis. A ...
Learn for free about math, art, computer programming, economics, physics, chemistry, biology, medicine, finance, history, and more. Khan Academy is a nonprofit with the mission of providing a free, world-class education for anyone, anywhere.

10. Cardinal Planes and Axes of Movement - Physiopedia
A sagittal plane, also known as the longitudinal plane, is perpendicular to the ground and divides the body into left and right. · A coronal or frontal plane is ...
Original Editor - The Open Physio project
11. Graph inequalities with Step-by-Step Math Problem Solver - QuickMath
x + y < 5 is a line and a half-plane. If one point of a half-plane is in the solution set of a linear inequality, then all points in that half-plane are in the ...
Graph inequalities or systems of inequalities with our free step-by-step math inequality solver
12. [PDF] Solutions to Practice Problems 1
With that normal vector, and since the point (1,2,2) is on the plane, the plane has equation. 2(x − 1) + (y − 2) − (z − 2) = 0. That is, 2x + y − z = 2.
%PDF-1.5 %ÐÔÅØ 3 0 obj << /Length 3640 /Filter /FlateDecode >> stream xÚÕ\K㶾ϯÐ*¯¼vù`§âC*ImÊÊa³³R¬×"Çëõ!¿= 4H(QÍ} 4è××ùþöæO?P9£$·ÄÒÙíýL³²"ÒÌnïfﲿ/ëõ|Á9Ï¥oÜÈ~,Võ¦Üa3¡o|×?Ì ÏÛmøP3ûWBÅCPÁsÁålÁDn`t?ÎåöÑuZÁ·ÐI]º_½Ý/a¬Uo÷åmñPá3:ïÑ¿HöNóùBSý°ÙÝÍ;ü-~~\âdcÙ}¹Çæz]àŧ9ͶË]Ñ4/ëо¬ª¢jZ÷å#¼÷q=g:«±«¨3Y¹ÙÍá'|ý"IC¾Éç\æFÚAº¿IMæ%LóKõ"aýä} 9´aË¿*ÞåfW X²Ý ;£.¸¤9³ <Âbçÿe²}KÍ"KR½ Ö¼T§ºá¹Q/0¦MöûÑiþ°ÃNg,gÁ_aMC¸k¦¹26S×¾IÑ rjÚ©|CÝ8¾ÌXoxhÞ$9o¼)|&\vߦv2 Ô½²Nk&øIm%Úª?ÓV6!0½z³¢S:Tí@IÙíõ±99a¿åf¡Dnu_1¾Ý>~ü¸Ù}¥Jiæ!A±è°NO[Þ-ÒBØrÓ ²i³åÜÕr ¶ÍJx è)ë¾rKÇâMë+ÔÍÝ'u¢â§´Ín[ª¹¦~þûlz;÷ªï8r½pØ·K\,¦Á+Õ_-.°dpùûû}ùW£¬1&§M·Çü 6tyýèK«XSj^Áçplôçõf帺F:AË¥DU§µ|ðyDkA/§Ôídô´Ú¢$µE¯¢¶RpÊqE^|Á]¹XnÓÂÐlµVZ0vË âe@QX®àûz]~,wË9øn Ðø ¨^§ØbyLñ3fsݹÎܦSå,ÀGONXßôÑëDSÛÑ\Üþ6Ç@äRhVDëf¹³Yx£¥97m@Å2>1 õ Q*{j:4¶ºacd Ï^=a=Äsg±õXOGY"Ï/CmN$?î <å°k:atj~¹Ä¯9ôIäÐ'Ç~¾NjFAD.ñ&Tñ°þ½q ¥Ð´ì4iÝ×Ú¹-`Á%ö'ÕÆáøi_ xðpÔfúð* æ G´G4»YPôÄÂt»© X ¯^´(é\¾A`cXÍmm¯i·CI;E©;d"DuâôøTóÆ´ÚaÁèyC9[ÊKæ<} åj2½e'ÎOÝTÔOîC#ÀäÊy´¢_F2ÏZ#ýü&F!nÎ, û1 ñ5=êÏëbåP¿%RúÅÚÜãu½qHÁCw <8ø°©+Çä¤n¢Î«·=!q³{Fk"ÆM!Hø ÆM¸ä¾r-/Ajû£wÁ§8Ñ`Knç"ÒØvälN¤0Þ÷b4À½MavÿÔEýaÍi¨NçTzyÇÙäÖFÓi$©ØS2+NqPÑ/±!æoÃÇ«Ýïî®(îÐ páü=Ñ·(LÄ>@9Ã4§çB@¹Ë+ú]s`Òë±l¢Þ<'óìÑ8G]Û¨_@ ¢õPÏ#ÍÓ>X wÿ(ëâëùB ЩCÁ9j.J×è.BK UøÐa6î÷.üÖëMå²®`ZØgV¡½øuùðië<M»Ð÷ª|ÜÞá¥Ãváº{ÈÁñ"¦ë¬c{g7~ \¼®> r¢½x¶:ü]q¿ íÆ w 3Z÷K¬|ô`¸/ïk®ENôtÅîxbUpF¡×êñCíòßHátC½g·û¢zÜÖ~1pR+|±i÷xÜ_e&ö:þªãw¤~,k!cB]°AÖÅfËÍoÊ{Üîö}2kÆ}ÓúHE£½u£ñlµ/«ª£b_úE¸{\ÕAgùþêUþÞMêæ/·7?߸í@fÔZ¸ØÅ@P¹z¸y÷Ìî Ý|ÏþðHövöãÍ?o¾OVkpKs*0Ár¬p@}Ñð3×:8r}¡CÄÞ"µð0J ùýÕ{¯^ïC²ègIDF"æâÛQ4¹@>^¢gÃðOÏoõÍ >\àIÏËÅh$/Ád_Ê(Ì!BßËk0A"uOÞUhõÞã¿ Þhí«_êFx³|á°ÈÚÞ§Ó^L@Pâl=ר#!&aa:ðdåéeä^§z"%£Ó Ã1°\>¯)aÌ@'kX5²ûOÙ0ü._\£ºãÍxu:q¤àH¯*Çßç¬{ vJÄ=? Eo°îð²÷wØ6¦?d®´=®iÎX¸þæôT2]wL[Xð;¾g §Á9rÕ9¹-Çô{>ýò,ؼé£4G¦/¨ègØ`ò ãŪÕäóVݦ#®h®`KZãWkø5j è\¯G3ܦ'lD$O«7uZ½9=µpA¾\Êz8{Xq¼nÁÔ-LÉĺºå«¢/Ëzººâjñûåpö*i¹ÌI8^nÈBçಸ° $_N<£/my¨]µ±¿-5VîÀÜAö [5Züý
13. [PDF] Introductory Physics Example Solutions - The Expert TA
Part (c) Create an expression for the balloon's vertical position as a function of time, y(t), in terms of t, vo, g, and θ. From the equations of kinematics, we ...
%PDF-1.6 %âãÏÓ 253 0 obj <> endobj 321 0 obj <>/Filter/FlateDecode/ID[<170EB1367EA8984993B1E4810DDBBB4D><824CBB1805301A4596B8A7D369EF4873>]/Index[253 142]/Info 252 0 R/Length 249/Prev 1017069/Root 254 0 R/Size 395/Type/XRef/W[1 3 1]>>stream hÞìпKQÆñsn¯¸¸$¸A.¡CÒA¶ýXj ]%po¨!ÿ)ÁÞçÛàß´|x8ïyÏ=÷7ËX0KKkʹWé;äSÆTúTåî;ÿ>âûøô{óÏ2qHeÀ×Í¡GÞ¦ç\QÊ'êru].^óµëÙ#åü½Ü:#sz´Ìä: mè·5å\Cn´U¹xàØ?êÈê ÷½é+ö) §ûrô.îiZ©Mfñßí¿g/ãÜqi;éÆ=n~ÇVæÿþ§rO? Òl+? endstream endobj startxref 0 %%EOF 394 0 obj <>stream hÞb```b``.d`g`ff@ a6 (GAÃav&Æv6C.Ý]/t½j=ºáء֦ÄÊJl^¥ì§]xû000J6tíäbz/!º¾÷ÐuâSY¿T0N}6¡U<ÏôZeº\fLEq,À¸þh'_ÈÍ+)g&ÊÅdx̶(ùøuå¥fÕD|r¤Ý+5êÂ`IË'§ þ¤Ë§²q²|P¡VqbS;ÀÆðãâë\¥ô.±é5*a÷_±bÉ#ùG¦ò¥Ìx8e¾C¡Vrù£#íZGN>dªe<Ê<ÛGJ÷G¡jÄd¹mËÒ^µ^,¯ø´xþø°ät»nTéZYó@Á/Á+mf<ñþtj{L§±ÖV¹¹ _©ÛuzÉó¸åxÓä:Ϧû¼H9~NÉoɧàÂüíB>'>¬æ)ù¥Ü¼tA®AÆöG&+Ùhk{/;¥¼ütÈZ«ä!s¤þxæìçsÊýòb¯%¯ÓÅ\÷ v=sleå¸JÓ®áQËËe=wLÌñj/*ÝñYåÚr#Uõ+ S¹J;{çîÐ0oèÙ§Q(Xzz¾Õ[!¯ütº^$,8ȳÏ"(8ŪãæãWz&$8:1ó×}¸èÜz=¨ãV û9 ¯mo¢?ê9oW3Õø¬Ü"ñÊtEÿJËR- Ñmû tVnxã¹ÔÈF«H[Ö¦ã×äÎÞózµJYfjM8èØÄ!²*@#ÒHô§a¦K{íª"6?/O^éUdÑ n&%%× xÀ¹BÊÆ0³±TPPI)- ¡ÇØL3ª¸D@E¦D%7QPPÐn!HVP &)(¤gÙ®p]2`.RRR@¸OPÙØÉõ@§Y Ì«z³äie$¹0-:AV$T Ê:ÈÎ@S¦1ð}ÒN@ @¦b¿LâËøýg3ò±¥³abaÇÌðqk+cÃcÇ^ßXf1¼b~òåÖ=%]¦·b¼Ê¡6ÊÁÌ×ô8D¼Xz?ÿ4TÏIf`a¶t¸É,Ë%ÇpáÃ]®H.Fkkuù+f32¬bmðH©]1q98?à Í^`»3î`xÈðW
14. Check whether a given point lies inside a triangle or not
Apr 27, 2023 · Solution: Let the coordinates of the three corners be (x1, y1), (x2, y2), and (x3, y3). And coordinates of the given point P be (x, y).
A Computer Science portal for geeks. It contains well written, well thought and well explained computer science and programming articles, quizzes and practice/competitive programming/company interview Questions.

15. Find if two rectangles overlap - GeeksforGeeks
Aug 6, 2022 · Find if two rectangles overlap ; C++. // CPP program for the above approach. #include
. struct Point {. int x, y;. }; ; Java. // Java ... A Computer Science portal for geeks. It contains well written, well thought and well explained computer science and programming articles, quizzes and practice/competitive programming/company interview Questions.
